ANTIDIABETIC EFFECTS OF HESPERIDIN AND NARINGIN IN TYPE 2 DIABETIC RATS

Osama M. Ahmed1,2, Ayman M. Mahmoud1*, Adel Abdel-Moneim1, Mohamed B. Ashour1

Key words: hesperidin, naringin, insulin resistance, adiponectin, resistin

SUMMARY

This study was designed to investigate the effect of hesperidin and naringin on serum glucose, blood glycosylated hemoglobin and serum insulin levels in high fat fed (HFD)/streptozotocin (STZ)-induced type 2 diabetic rats. In addition, the effect on serum lipid profile, adiponectin and resistin levels, cardiac function parameters and liver and muscle glycogen contents was assessed. Hesperidin and naringin were orally and daily administered at a dose level of 50 mg/kg b.w. for 30 days to HFD/STZ type 2 diabetic rats. Both hesperidin and naringin supplementation potentially ameliorated the elevated levels of glucose, glycosylated hemoglobin, AST, LDH and CK-MB and the lowered serum insulin level and hepatic and muscle glycogen content of insulin resistant diabetic rats. Both compounds were also found to alleviate lipid profile and serum adiponectin and resistin levels. These results showed that hesperidin and naringin have potential antihyperglycemic and antidyslipidemic efficacies as well as cardiac function improving action in HFD/STZ-induced type 2 diabetic rats.

INTRODUCTION

Diabetes mellitus is one of the major health problems in both developed and underdeveloped countries. Diabetes mellitus, a pervasive and multifactorial metabolic syndrome, is characterized by imperfection in insulin secretion and insulin receptor or post receptor events with derangement in carbohydrate, protein and lipid metabolism, and results in chronic hyperglycemia, a clinical hallmark of diabetes (1). Hyperglycemia and hyperlipidemia, as the most common features of diabetes mellitus, contribute to the development of microvascular and macrovascular complications of diabetes, which cause the morbidity and mortality of diabetes (2). In addition, hyperglycemia in diabetic patients is associated with alteration in glucose and lipid metabolism and...
modification in liver enzyme levels (3). Diabetes mellitus is recognized as a major risk factor for cardiovascular diseases (CVD) such as atherosclerosis, heart attack, stroke, etc. About 75% of deaths among men with diabetes and 57% among women with diabetes are attributable to CVD (4).

Type 2 (non-insulin dependent diabetes mellitus, NIDDM) is a much more prevalent form of diabetes and is responsible for 90% of the disease prevalence (5,6). It is caused by insulin resistance coupled by a failure of the beta cell to compensate for it (7). Nowadays, adipose tissue is found to be a site of many polypeptides (adipokines) whose disturbance may lead to insulin resistance in type 2 diabetes (8,9). The disturbance of adipokines may directly or indirectly interact with insulin receptors and/or insulin signaling leading to insulin resistance (10,11).

Adiponectin is a peptide hormone predominantly synthesized and secreted from adipose tissue that modulates a number of metabolic processes, including glucose regulation, fatty acid catabolism, and vascular biology (12,13). In contrast to other adipokines, adiponectin is underexpressed in obese patients with insulin resistance or type 2 diabetes mellitus (T2DM) (14,15), and in patients with coronary heart disease (15). In humans, circulating levels of adiponectin are positively correlated with insulin sensitivity (16). Low plasma levels of adiponectin (hypoadiponectinemia) have been observed in several forms of diabetes with insulin resistance, including T2DM, gestational diabetes, and diabetes associated with lipodystrophy (16). Resistin belongs to a family of cysteine-rich secretory proteins called resistin-like molecules (17,18). In rodents, resistin is derived almost exclusively from adipose tissue, and serum resistin is elevated in animal models of obesity and insulin resistance (19,20). Plasma resistin levels were highly positively correlated with triglycerides and apoA-I/apoB ratio, whereas they were inversely correlated with high density lipoprotein (HDL) and apoA-I levels (21). Moreover, the insulin-resistant effects of resistin are thought to account for the activation of glucose 6-phosphatase, which subsequently prevents glycogen synthesis and increases the rate of glucose production (22). These findings suggest that resistin contributes to the development of insulin resistance and atherosclerosis, and thereby is linked to clinical vascular events (23).

Nowadays, the agents used as the main means for diabetes treatment are synthetic drugs and insulin. However, these drugs usually come with considerable side effects, such as hypoglycemia, drug resistance, dropsy, and weight gain (24). In contrast, hundreds of traditional folk medicines have demonstrated potential for the treatment of diabetes with less tolerability and side effects. Thus, there is an increasing need to search for more natural antidiabetic agents from the traditional medicine. Currently, there is much interest in the usefulness of citrus fruits and their constituting flavonoids because their intake appears to be associated with a reduced risk of certain chronic diseases and increased survival, as reported by Chen et al. (25). However, few publications assessing the antidiabetic effects of citrus flavonoids, hesperidin and naringin, were found (26). Thus, the present study was conducted to evaluate the efficacy of these flavonoids on the impaired glucose tolerance, insulin resistance and some biochemical parameters of high-fat diet/streptozotocin induced-diabetic albino rats and to suggest their probable anti-hyperglycemic and anti-hyperlipidemic mechanisms of action.

MATERIALS AND METHODS

Chemicals

Hesperidin, naringin and streptozotocin were purchased from Sigma Chemicals Co., St. Louis, MO, USA, stored at 2-4 °C and protected from sunlight. All other chemicals were of analytical grade and were obtained from standard commercial supplies.

Experimental animals

White male albino rats (Rattus norvegicus) weighing about 190±10 g were used as experimental animals in the present investigation. The animals were housed in standard polypropylene cages and maintained under controlled room temperature (22±2 °C) and humidity (55±5%) with 12-h light and 12-h dark cycle and were fed a standard diet of known composition, and water
The animals used in the present study were maintained in accordance with the principles and guidelines of the Canadian Council on Animal Care as outlined in the Guide for the Care and Use of Laboratory Animals (27).

Development of HFD-fed low dose STZ-treated type 2 diabetic rats

The rats were allocated to two dietary regimens by feeding either normal or high fat diet (HFD) *ad libitum*, for the initial period of 2 weeks (28). The composition and preparation of HFD have been described elsewhere (29). After 2 weeks of dietary manipulation, the group of rats fed HFD were injected intraperitoneally (i.p.) with a low dose of STZ (35 mg/kg b.w.), while the respective control rats were given vehicle citrate buffer (pH 4.5) in a dose volume of 1 mL/kg, i.p. Seven days after STZ injection, rats were screened for blood glucose levels. Overnight fasted (10-12 hours) animals were given glucose (3 g/kg b.w.) by gastric intubation. After 2 hours of oral administration, blood samples were taken from lateral tail vein, left to coagulate and centrifuged; then serum glucose concentration was measured. Rats having serum glucose ≥200 mg/dL after 2 hours of glucose intake were considered diabetic and selected for further pharmacological studies. The rats were allowed to continue to feed on their respective diets until the end of the study.

Experimental design

The experimental animals were divided into four groups, each group comprising six rats designated as follows: group 1 served as control rats; group 2 served as diabetic control rats; group 3 served as diabetic rats administered hesperidin (50 mg/kg b.w.) in aqueous suspension orally for 30 days; and group 4 served as diabetic rats administered naringin (50 mg/kg b.w.) in aqueous suspension orally for 30 days. The dosage was adjusted every week according to any change in body weight to maintain similar dose per kg body weight of rat over the entire period of study for each group. By the end of the experiment, animals were sacrificed and blood samples, muscle and liver were obtained.

Biochemical study

On the day before sacrifice, oral glucose tolerance test (OGTT) was performed in normal, diabetic control and diabetic rats treated with hesperidin and naringin. Blood samples were obtained from lateral tail vein of rats deprived of food overnight (10-12 hours). Successive blood samples were then taken at 0, 30, 60, 90 and 120 minutes following the administration of glucose solution (3 g/kg b.w.) through gastric intubation. Blood samples were left to coagulate, centrifuged, and clear non-hemolyzed serum was obtained for determination of glucose concentration according to the method of Trinder (30), using commercial diagnostic kit (Randox Laboratories, UK). Serum insulin level was assayed by sandwich ELISA using kits purchased from Linco Research, USA. Blood glycated hemoglobin was determined according to the method of Little et al. (31) using Helena GLYCO-Tek affinity column method (Helena Laboratories, USA). Liver and muscle glycogen contents were assayed according to the method of Seifter et al. (32). Serum adiponectin was assayed by sandwich ELISA using kits purchased from Linco Research (USA) and serum resistin was assayed using ELISA kits purchased from Biovendor (USA).

Because abnormalities in insulin action are poorly detected by a single determination of glucose or insulin levels (33,34), insulin resistance was evaluated by homeostasis model assessment estimate of insulin resistance (35) as follows:

\[\text{HOMA-IR} = \frac{\text{fasting insulin level (µU/mL)} \times \text{fasting blood glucose (mmol/L)}}{22.5} \]

Serum cholesterol (36), triglycerides (37), HDL-cholesterol (36) and free fatty acids (FFAs) (38) were estimated. Liver hydroxymethylglutaryl-CoA reductase (HMG-CoA reductase) activity (39) was estimated by dividing mevalonate by HMG-CoA (higher ratio means lower activity). Serum LDL-cholesterol level was calculated from Friedewald (40) formula (LDL-cholesterol = total cholesterol –...
triglycerides/5 – HDL-cholesterol). Serum vLDL-cholesterol concentration was calculated according to Nobert (41) formula (vLDL-cholesterol = triglycerides/5). Serum aspartate aminotransferase (AST) (42), lactate dehydrogenase (LDH) (43), and creatine kinase (CK-MB) (44) activities were also estimated. Cardiovascular indices were calculated according to Ross formula (45) as follows: cardiovascular index 1 = total cholesterol/HDL-cholesterol and cardiovascular index 2 = LDL-cholesterol/HDL-cholesterol.

Statistical analysis

Data were analyzed using the one-way analysis of variance (ANOVA) (46) (PC-STAT, University of Georgia, 1985) followed by LSD test to compare various groups with each other. Results were expressed as mean ± SE and values of $P>0.05$ were considered non-significantly different, while those of $P<0.05$ and $P<0.01$ were considered significant and highly significant, respectively.

RESULTS

The OGTT of diabetic rats showed a highly significant ($P<0.01$; LSD) elevation in fasting state and at 30, 60, 90 and 120 min after oral glucose loading as compared with normal animals. The treatment of diabetic animals with hesperidin and naringin induced a potential improvement ($P<0.01$; LSD) of elevated values at all points of OGTT curve (Fig. 1).

The effect of hesperidin and naringin on the levels of fasting serum insulin and blood glycosylated hemoglobin (HbA1c%) in HFD/STZ diabetic rats is shown in Table 1. HbA1c% was highly significantly elevated ($P<0.01$; LSD) in diabetic rats as compared with normal control. Oral administration of hesperidin as well as naringin to diabetic rats significantly ($P<0.01$; LSD) improved the altered level; hesperidin seemed to be more effective than naringin. Serum insulin level, on the other hand, exhibited an opposite behavioral pattern; it was significantly ($P<0.01$; LSD) decreased in diabetic rats as compared to normal ones and was significantly increased as the result of treatment with both hesperidin and naringin, which had more or less similar effects. Liver and muscle

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Insulin (µU/mL)</th>
<th>HbA1c%</th>
<th>Liver glycogen (mg/g tissue)</th>
<th>Muscle glycogen (mg/g tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>26.84±1.40a</td>
<td>4.71±0.18d</td>
<td>22.81±1.86a</td>
<td>4.98±0.22a</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>15.50±0.76c</td>
<td>8.96±0.23a</td>
<td>11.95±0.77c</td>
<td>2.03±0.22c</td>
</tr>
<tr>
<td>Diabetic treated with hesperidin</td>
<td>21.55±1.13b</td>
<td>5.85±0.18c</td>
<td>19.33±1.25b</td>
<td>3.49±0.18b</td>
</tr>
<tr>
<td>Diabetic treated with naringin</td>
<td>20.67±1.08b</td>
<td>6.26±0.17b</td>
<td>17.38±1.14b</td>
<td>3.49±0.36b</td>
</tr>
<tr>
<td>F-prob</td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
</tr>
<tr>
<td>LSD at 5%</td>
<td>2.32</td>
<td>0.40</td>
<td>2.74</td>
<td>0.53</td>
</tr>
<tr>
<td>LSD at 1%</td>
<td>3.17</td>
<td>0.54</td>
<td>3.73</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SE; number of animals in each group is six; means which share the same superscript symbol(s) are not significantly different.
glycogen contents of HFD/STZ diabetic control rats showed a highly significant decrease (LSD; \(P<0.01\)) as compared to normal control. Both treatment agents showed detectable amelioration of liver and muscle glycogen contents of diabetic rats (Table 1).

HOMA-IR of normal, diabetic and diabetic treated with hesperidin and naringin groups is depicted in Figure 2. Diabetic rats showed a significant (\(P<0.01\); LSD) elevation of HOMA-IR that was decreased significantly upon the administration of either hesperidin or naringin, which had more or less similar effects.

Data on the effect of hesperidin and naringin on lipid profile of diabetic rats are presented in Table 2. Diabetic rats exhibited a highly significant increase (\(P<0.01\); LSD) in serum cholesterol, triglycerides, LDL- and VLDL-cholesterol and FFAs as compared with the non-diabetic group. Moreover, HDL-cholesterol was affected in an opposite manner, as it was significantly decreased (\(P<0.01\); LSD) in diabetic rats and significantly increased (\(P<0.01\); LSD) in response to both treatment agents. The administration of both hesperidin and naringin led to marked amelioration of all parameters of the altered lipid profile. Liver HMG-CoA reductase activity, expressed as a ratio of HMG-CoA to mevalonate, was significantly (LSD; \(P<0.01\)) increased in diabetic rats as compared with normal control rats. Administration of the two tested agents produced a highly significant (LSD; \(P<0.01\)) decrease in the enzyme activity as compared with diabetic group (Fig. 3).
Table 3. Heart function variables of normal, diabetic control and diabetic rats treated with hesperidin and naringin

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter</th>
<th>AST (U/L)</th>
<th>LDH (U/L)</th>
<th>CK-MB (U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td>33.62±1.49<sup>c</sup></td>
<td>171.86±5.71<sup>d</sup></td>
<td>111.74±4.52<sup>d</sup></td>
</tr>
<tr>
<td>Diabetic control</td>
<td></td>
<td>95.03±5.24<sup>a</sup></td>
<td>276.74±7.96<sup>a</sup></td>
<td>262.24±5.24<sup>a</sup></td>
</tr>
<tr>
<td>Diabetic treated with hesperidin</td>
<td></td>
<td>45.07±1.60<sup>b</sup></td>
<td>196.05±3.84<sup>c</sup></td>
<td>180.65±5.08<sup>b</sup></td>
</tr>
<tr>
<td>Diabetic treated with naringin</td>
<td></td>
<td>46.79±2.20<sup>b</sup></td>
<td>210.66±6.43<sup>b</sup></td>
<td>168.63±4.45<sup>c</sup></td>
</tr>
<tr>
<td>F-prob</td>
<td></td>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
</tr>
<tr>
<td>LSD at 5%</td>
<td></td>
<td>6.35</td>
<td>13.52</td>
<td>10.25</td>
</tr>
<tr>
<td>LSD at 1%</td>
<td></td>
<td>8.66</td>
<td>18.44</td>
<td>13.98</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SE; number of animals in each group is six; means which share the same superscript symbol(s) are not significantly different.

Table 3 depicts the effect of hesperidin and naringin administration on some cardiac function biomarkers in serum of diabetic rats. Serum CK-MB, AST and LDH activities were deleteriously increased (LSD; \(P<0.01 \)) in diabetic control rats. Moreover, treatment of diabetic animals with both hesperidin and naringin induced potential alleviation (LSD; \(P<0.01 \)) of these altered parameters; hesperidin seemed to be more effective than naringin in improving serum AST and LDH activities, while the latter showed more potent effect on CK-MB activity. The ratios of total cholesterol and LDL-cholesterol to HDL-cholesterol exhibited the same behavioral pattern; they were highly significantly (LSD; \(P<0.01 \)) increased in HFD/STZ diabetic rats as compared to normal control group. Hesperidin as well as naringin produced remarkable amelioration of these altered parameters (Fig. 4).

Diabetic rats exhibited a highly significant (LSD; \(P<0.01 \)) decrease in fasting serum adiponectin level as compared with normal control rats. The administration of both agents showed marked improvement (LSD; \(P<0.01 \)) of serum adiponectin concentration (Fig. 5). Administration of HFD and STZ produced a highly significant elevation (\(P<0.01 \); LSD) of serum resistin as compared with normal rats. The treatment of HFD/STZ diabetic rats with hesperidin and naringin induced highly significant amelioration (\(P<0.01 \); LSD) of elevated serum resistin (Fig. 6).
DISCUSSION

Type 2 diabetes develops primarily due to insulin resistance and insulin producing pancreatic β-cell dysfunction, leading to insufficient insulin secretion (47-49). Feeding rats with HFD can result in insulin-resistance mainly through Randle or glucose-fatty acid cycle (50,51). In our study, HFD/STZ diabetic control rats exhibited significantly elevated fasting blood glucose and HOMA-IR, accompanied by diminished serum insulin levels. Hence, it is suggested that insulin resistance developed in these animals. Therefore, this rat model exhibits hyperglycemia and insulin resistance that would closely reflect the natural history and metabolic characteristics of humans, and it is further sensitive to pharmacological testing.

In diabetic animals, the present data indicated a marked increase in serum glucose levels as compared to normal rats. These results run parallel with the studies of Schalaan et al. (52) and Ahmed et al. (53). Administration of STZ caused rapid destruction of pancreatic β-cells in rats, which led to impaired glucose stimulated insulin release and insulin resistance, both of which are marked features of T2DM (54). Elevation of blood glucose may be attributed to the reduced entry of glucose to peripheral tissues, muscle and adipose tissue (55), increased glycogen breakdown (56) and increased gluconeogenesis and hepatic glucose production (57).

Furthermore, Powers (58) states that insulin resistance in T2DM causes elevation in blood glucose due to the same reasons. From another point of view, the hyperglycemia observed in our study could be explained through the glucose-fatty acid cycle (59), where the high FFAs reduce glucose uptake and utilization through the increased endogenous glucose production (60). The present data demonstrated that the treatment of diabetic rats with either hesperidin or naringin caused potential amelioration of glucose tolerance. The decrease in elevated serum glucose levels is in agreement with the results of Jung et al. (61), who recorded the anti-hyperglycemic effect of hesperidin and naringin in C57BL/KsJ-db/db mice. Moreover, Pari and Suman (62) report on the anti-hyperglycemic effect of naringin in STZ/nicotinamide diabetic rats, and Akiyama et al. (63) demonstrated the glucose lowering effect of hesperidin in type 1 diabetic rats.

The increase observed in the levels of glycosylated hemoglobin in diabetic control group rats was due to the presence of excessive amounts of blood glucose. In diabetes, the excess of glucose present in blood reacts with hemoglobin to form glycosylated hemoglobin (64). Estimation of HbA1c has been found to be particularly useful in monitoring the effectiveness of therapy in diabetes (65). In our study, oral administration of hesperidin and naringin significantly decreased the levels of fasting blood glucose and HbA1c. These results indicated the beneficial effects of both hesperidin and naringin in preventing the pathogenesis of diabetic complications caused by impaired glucose metabolism.

In comparison with normal control rats, the present study revealed a highly significant decrease in fasting insulin level of HFD/STZ diabetic rats. It can be hypothesized that the possible mechanism of hesperidin and naringin anti-hyperglycemic action may be through potentiating the pancreatic secretion of insulin from islet β-cells and/or due to enhanced transport of blood glucose to peripheral tissue, or by other mechanisms such as stimulation of glucose uptake by peripheral tissue, inhibition of endogenous glucose production or activation of gluconeogenesis in liver and muscles. By their ability to scavenge free radicals, hesperidin and naringin may reduce oxidative stress and reduce the expression of proinflammatory genes, thereby improving insulin sensitivity and glucose metabolism.
radicals, hesperidin (66) and naringin (67) prevent STZ-induced oxidative stress and protect β-cells resulting in increased insulin secretion and decrease in the elevated blood glucose levels. In this context, Pari and Suman (62) showed that naringin decreased elevated blood glucose concentration and increased insulin release in STZ-induced diabetic rats. Also, Akiyama et al. (63) report that in STZ-induced diabetic rats, hesperidin decreased blood glucose and increased insulin release.

Liver glycogen level may be considered as the best marker for assessing antihyperglycemic activity of any drug (68). The increased hepatic glucose output in diabetes may be derived from glycogenolysis and/or gluconeogenesis, as reported by Raju et al. (57). In general, increased hepatic glucose production plus decreased hepatic glycogen synthesis and glycolysis are the major symptoms in type 2 diabetes that result in hyperglycemia (61). Our results revealed an enormous depletion in hepatic and muscle glycogen contents. These results are in accordance with those of Lavoie and Van de Werve (69) and Ahmed et al. (53), who found that STZ-induced diabetes reduced hepatic glycogen content and increased glucose-6-phosphatase activity in diabetic rats. These results are also in agreement with the work of Grover et al. (68) and Pari and Suman (62), who demonstrated a decreased enzymatic activity of hexokinase also in diabetic animals, resulting in depletion of liver glycogen. These changes are obviously due to insulin deficiency, which in turn results in the activation of glycogenolytic and gluconeogenic pathways (70). In the present study, the elevation of liver glycogen content after treatment with hesperidin and naringin was due to amelioration of these altered enzyme activities secondary to the increase of insulin levels in the blood.

It is reported that diabetes is associated with profound alterations in lipid and lipoprotein profile (71). Changes in concentrations of plasma lipids including cholesterol and lipoprotein are complications frequently observed in patients with diabetes mellitus and certainly contribute to the development of coronary heart disease (CHD) in these patients (72). In addition, Keenoy et al. (73) and Ravi et al. (74) demonstrated that the abnormalities in lipid metabolism generally led to elevation in the levels of serum lipids and lipoproteins, which in turn play an important role in the occurrence of premature and severe atherosclerosis in patients with diabetes. In the present study, the rise in blood glucose was accompanied by a marked increase in TC, LDL-C, TG and reduction in HDL-C in HFD/STZ diabetic rats. These results are in agreement with the findings of Tan et al. (75) and Zhang et al. (76), who report increased serum TG, TC and LDL-C in HFD fed STZ-induced diabetic rats. On the other hand, HDL-C showed a different behavioral pattern, where it was detectably lowered in diabetic rats. Serum HDL-C was found to decrease in HFD/STZ type 2 diabetic rats, as reported by Tan et al. (75) and Schalaan et al. (52), and in STZ/NA type 2 diabetic rats as shown by Ahmed et al. (53). Treatment of HFD/STZ diabetic rats with hesperidin and naringin produced profound improvements of the altered serum lipid variables. These results are in agreement with the work of Gorinstein et al. (77), who found that hesperidin and naringin supplementation significantly increased HDL and lowered TC, LDL, total lipids and TG plasma levels in rats fed a cholesterol-containing diet. The decrease of LDL levels may occur due to the reduction of VLDL and the increase of hepatic depuration of LDL precursors (78). Both hesperidin and naringin significantly ameliorated serum HDL-C in HFD/STZ diabetic rats. That is an advantage, since HDL-C is responsible for the transportation of cholesterol from peripheral tissues to the liver for metabolization. Both agents thus have the potential to prevent the development of atherosclerosis and CHD as secondary complications of severe diabetes mellitus.

In the HFD/STZ diabetic group, the elevated serum FFA level recorded in this study is in agreement with that estimated in many previous studies (79,80). Several mechanisms of how elevated FFA levels decrease insulin sensitivity have been proposed, including the Randle hypothesis concerning inhibition of insulin-stimulated glucose transport. It also should be noted that FFAs regulate gene expression, especially those involved in lipid and carbohydrate metabolism (81). Chronically elevated FFAs may also
Impair insulin secretory function through toxic effects on pancreatic β-cells as predicted by the “lipotoxicity hypothesis” (82). Finally, increased flux of FFAs from adipose tissue due to lipolysis of visceral adipose depots to the non-adipose tissue (e.g., liver, skeletal muscle) may lead to excessive endogenous glucose production and progression to frank type 2 diabetes (83). Therefore, decreasing plasma FFA level is proposed as a strategy for prevention and treatment of insulin resistance as stated by Na et al. (84). Upon treatment of diabetic animals with hesperidin and naringin, there was a decreased level of serum FFA, which may participate in the insulin sensitizing effects of both tested compounds. Also, the ability of scavenging free radicals and antioxidant properties of both agents may also participate in the hypolipidemic activity of both treatments by inactivating hepatic HMG-CoA reductase, a key enzyme, in cholesterol synthesis according to Raz et al. (85), who states that inhibitors of hepatic HMG-CoA reductase are well established drugs for the treatment of hypercholesterolemia and decrease the incidence of dyslipidemia in diabetic subjects.

Diabetic dyslipidemia has long been shown to have a strong relation with CHD (65), which is the most dangerous and life threatening complication of diabetes and the risk of CHD in diabetes increases two- or more folds (86). Increased TG and TC levels and decreased HDL-C represent a displayed lipid profile known as atherogenic profile, which leads to the development of CHD (87). As a favorable effect on lipid profile was observed following treatment with both hesperidin and naringin, this indicated that both agents might help prevent the progression of CVD. In addition, several atherogenic indices such as TC/HDL-C and LDL-C/HDL-C have been used to predict CHD risk (88). Reduction of these indices in hesperidin and naringin supplemented diabetic rats strongly supported the notion that dietary supplementation with either hesperidin or naringin may lead to reduction in the risk of developing heart diseases. Also, there is some evidence to suggest that flavonoids can be incorporated into lipoprotein within the liver or intestine and subsequently be transported within the lipoprotein particle. Therefore, flavonoids may be ideally located for protecting LDL from oxidation (61). Moreover, flavonoid consumption was inversely associated with mortality from CHD. The relative risks for CHD mortality and first myocardial infarction were by approximately 50% lower in the highest tertile of flavonoid intake (89).

Our study revealed a significant increase in serum resistin level in HFD(STZ) diabetic group in comparison with that of controls, which ran parallel to serum glucose levels, insulin levels and HOMA-IR index. The findings of this study are in line with that of Kushiyama et al. (90), who found that transgenic mice with hepatic resistin overexpression exhibited significant hyperglycemia, hyperlipidemia, fatty liver, and pancreatic islet enlargement when fed a HFD. These effects may be due to resistin-induced impairment of glucose homeostasis and insulin action, thus modulating one or more steps in the insulin signaling pathway and possibly playing a role in the pathogenesis of insulin resistance (91).

The mechanism whereby resistin decreases insulin sensitivity involves several impacts. First, resistin reduces adenosine 5′-monophosphate activated protein kinase activity in skeletal muscle, adipose tissue, and liver. These alterations decrease tissue insulin sensitivity, which results in glucose intolerance, elevated FFA levels, and hypertriglyceridemia (22). Secondly, the resistin-induced reduction in IRS-1 and IRS-2 elevates mRNA levels of gluconeogenic enzymes, such as glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, thus suggesting a direct resistin induction of insulin resistance in the liver (92). Thirdly, resistin decreased glycogen synthase (GS) activity both in the presence and absence of insulin; this suggests that resistin directly down-regulates GS activity (93). Furthermore, it has been reported that resistin promotes lipid accumulation in human macrophages by up-regulating CD36 cell surface expression, which is one of the scavenger receptors in macrophages involved in the uptake of modified LDL (94). Based on the current data, the resistin lowering effect of hesperidin and naringin may directly participate in their anti-hyperglycemic and anti-hyperlipidemic effects.
In contrast to resistin, HFD/STZ diabetic rats exhibited diminished serum adiponectin level and treatment with either hesperidin or naringin significantly alleviated serum adiponectin. Serum levels of adiponectin are found to be in agreement with insulin sensitivity and its reduced levels are associated with the etiology of T2DM and obesity (95). Also, adiponectin has been reported to sensitize body tissues toward actions of insulin. The proposed mechanism of action for adiponectin includes the following: 1) its insulin sensitizing effect, which in turn regulates glucose metabolism through stimulation of AMPK (96); 2) enhanced oxidation of muscle fat and glucose transport mediated through AMPK activation and acetyl-CoA carboxylase inhibition (97); 3) inhibition of hepatic gluconeogenesis through decrease in the expression of phosphoenolpyruvate carboxylase and glucose-6-phosphatase (96); and 4) increased fatty acid combustion and energy consumption, partly through peroxisome proliferator activated receptor-α activation, leading to decreased TG content in skeletal muscles and liver (11). Moreover, it has been shown that mice lacking adiponectin expression have reduced insulin sensitivity or are more likely to suffer from insulin resistance (98). Yet, the insulin sensitizing effects of the tested flavonoids are mediated partly via increasing serum adiponectin level.

Taken together, it can be concluded that the ameliorative effect of hesperidin and naringin on carbohydrate and lipid variables may be attributed to their insulin releasing capacity, lipid lowering effect, and ameliorating the altered adiponectin and resistin levels.

REFERENCES

